Transmitter

Series 450 Programmable Integral Temperature Transmitter

The Series 450 Programmable Integral Temperature Transmitter is ideal for monitoring temperature in highly moist or corrosive environments and in small areas such as pipes and tanks. The unit consists of a 4-wire Pt100 RTD sensor, built-in (4 to 20) mA transmitter, and process connection. The integral design eliminates all external screw connections, simplifying the electrical installation process and solving the problems caused by moisture, loose connections, and corrosion. A "quick disconnect" M12 plug adapter connects the transmitter to a PC for ease of calibration, re-programming, and wiring accuracy.

SERIES 450 PROGRAMMABLE INTEGRAL TEMPERATURE TRANSMITTER

Application Areas

- PC programmable temperature transmitter for converting Pt100 input signal into a scalable (4 to 20) mA analog output signal
- Platinum Resistance Thermometer (RTD)
- Ideal for use in applications where sanitary wash-down procedures are required
- Compact design is well suited for use in small areas such as tanks and pipes
- Used for measuring temperatures from (-51 to 160) °C [-60 to 320] °F

Features and Benefits

- PC programmable transmitter with (4 to 20) mA output
- Reliable measurements despite fluctuations in ambient temperature
- Available in threaded and Clean-In-Place (CIP) connections
- RFI/EMI Protected
- Component

M12 CONNECT OR

See RTD Section For Ordering Information

RTD ASSEMBLY WITH THREADED CONNECTION

340-4

Series 450 Programmable Integral Temperature Transmitter Specifications

INPUT

Resistance Thermometer Input (RTD)		
ТҮРЕ	MEASUREMENT RANGE	MINIMUM RANGE
Pt100 (α = 0.003 85)	(-51 to 160) °C [-60 to 320] °F	10 °C [18 °F]
Connection Type	4 wire connection (standard)	
Sensor current	≤ 0.6 mA	

OUTPUT

Output (Analog)

Output (Analog)	
Output signal	(4 to 20) mA or (20 to 4) mA
Transmission as	Temperature linear
Maximum load	(V _{power supply} - 10 V) / 0.023 A (current output)
Induced current required	≤ 3.5 mA
Current limit	≤ 23 mA
Switch on delay	2 s
Electronic response time	1s

Failure Mode

Undershooting measurement range	Decreases to 3.8 mA
Exceeding measurement range	Increases to 20.5 mA
Sensor breakage/short circuit	≤ 3.6 mA or ≥ 21.0 mA

ACCURACY

Accuracy	
Electronics measurement error	0.1 °C or 0.08% ^[1]
Reference conditions	Calibration temperature (23 ± 5) °C [73 ± 9] °F
Sensor measurement error	Class A \pm (0.15 + 0.002 t) °C Class B \pm (0.3 + 0.005 t) °C Grade B \pm (0.25 + 0.0042 t) °C Class AA \pm (0.01 + 0.0017 t) °C 1/5 Class B \pm (0.06 + 0.0017 t) °C t = value of temperature without regard to sign, °C
Influence of power supply	± 0.01%/V deviation from 24 V ^[2]
Load influence	± 0.02%/100 Ω ^[2]
Temperature drift	$T_d = \pm (15 \text{ ppm/°C} \times (\text{full scale value } + 200) + 50 \text{ ppm/°C} \text{ of set measuring range}) \times \Delta \phi$ $\Delta \phi = \text{deviation of ambient temperature from the reference operation condition}$
Electronics long term stability	≤ 0.1 °C/year ^[3] or ≤ 0.05%/year ^{[1][3]}
[1] % is related to the adjusted me [2] All data is related to a measurem	easurement range (the value to be applied is the greater) nent and value of 20 mA

[3] Under reference conditions

Transmitter

Electrical Connection

	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \left(\begin{array}{c} \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \left(\\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left) \\ \left(\\ \end{array} \left) \left(\\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left) \\ \left(\\ \end{array} \left) \left(\\ \end{array} \left(\\ \end{array} \left) \left(\\ \end{array} \left) \\ \left(\\ \end{array} \left) \left(\\ \end{array} \left) \\ \left(\\ \end{array} \left) \left(\\ \end{array} \left) \\ \left(\\ \end{array} \left)	
Electrical connection	Electrical connection of the compact thermometer (view from above) - M12 plug, 4-pin Pin 1: Power supply (10 to 35) V dc; Current output (4 to 20) mA Pin 2: PC configuration cable connection Pin 3: Power supply 0 V dc; current output (4 to 20) mA Pin 4: PC configuration cable connection	
Power supply	U_{b} = (10 to 35) V dc, polarity protected	
Allowable ripple	$U_{ss} \leq 3V$ at $U_{b} \geq 13V$, $f_{max} = 1$ kHz	

Environmental Conditions

Ambient Temperature	(-40 to 85) °C [-40 to 185] °F
Storage Temperature	(-40 to 100) °C [-40 to 212] °F
Climatic Class	EN 60 654-1, class C
Condensation	Permitted
Ingress protection	IP 67
Shock resistance	4g / (2 to 150) Hz as per IEC 60 068-2-6
EMC immunity	Interference immunity and interference emission as per EN 61 326-1 (IEC 1326)

Process

	MAXIMUM AMBIENT	MAXIMUM PROCESS
Process temperature limit	to 25 °C [77 °F] to 40 °C [104 °F] to 60 °C [140 °F] to 85 °C [185 °F]	160 °C [320 °F] 135 °C [275 °F] 120 °C [248 °F] 100 °C [212 °F]

Approvals

c 🔊 us	UL Recognized Component
Autorea	3-A Sanitary Council Standard 74- (CIP sensors only)

342-3